データサイエンス座談会 Vol.3

テーマ3:人工知能が人間を超える「シンギュラリティ(技術的特異点)」は来ると思いますか?

❝AIが進化しても残る仕事って何?❞

奥野:さて、次のテーマは(学生がサイコロをふり)──、「人工知能が人間を超える「シンギュラリティ」は来ると思いますか?」です。

玉手:皆さんはシンギュラリティという言葉を聞いたことはありますか? 技術的変換点といって、そこから一気に伸びたり一気に衰退するポイントのことを言います。人工知能が人間と同様の会話能力を持つまでにはまだ至っていませんが、将来的に技術が発展し、AIが人間の思考に対応して自己学習を行うようになると、人工知能におけるシンギュラリティが訪れると考えられます。

富岡:マンガの世界が現実になるかもしれないんですね。

奥野:そうです。これから多くの職業がAIに変わると言われていますね。これまでも手仕事が工場に代わりオートメーションになりましたが、それと同じようなことになるのかなと私はイメージしてます。でも、それでも人でないといけないもの、もしくは人だからこそ残るものはあると思いますか?

富岡:教育現場では、授業の資料はAIの方が簡単に素早くつくることができるかもしれません。でも、生徒が「わからないんです」と質問したときはやはり先生の方が、求められるものに近い対応ができるのではないのかなと思います。ほかにも、最近はお店やホテルや施設の案内係がAIというところも増えていますが、人がやるからこその良さが感じられるものも残したいです。

齋藤:僕がこれは人でなくてはと思うのは、観て楽しむスポーツですね。AIよりも、人が頑張ってる姿を見た方が楽しいし、共感すると思います。

玉手:eスポーツの世界では、もう人間はAIに勝てないですよね。

齋藤:そうですね。機械が入ると勝ち負けの話にはならないことが多いですね。

玉手:高橋さんはどうですか?

高橋:私は人間がやり続けることができる仕事として、感情を表現できるものと、高いコミュニケーション力が求められるものは残ると思います。スポーツや芸術、音楽などはやはり人間でないとできない気がします。コミュニケーションにあたっては、今もこうしてみんなで話してる所に良さがあり、人工知能として話していても感情を揺さぶられることはないと思うんです。

玉手:たしかに、このように皆さんとリアルで対話する臨場感の良さは、AIにはありませんね。

高橋:そうなると保育士や学校の先生、サービス業にも人間の仕事が残り続けて欲しいなと思います。

秋葉:私も高橋さんと同じく、感情に関してはAIは難しいかなと感じます。人間は楽しいだけでは終わらなくて、その裏にはいろいろな複雑な感情があります。

もしそのAIをつくるとしても、必ずモデルになる人がいて、その人の感情や価値観を物差しにして5段階を評価します。だからそれが必ずしも正しいとは限らないと思います。人間の複雑な面や、人間にしかない脳のようなものを超えるのは難しいかなと思っています。

玉手:そういった意味では、AIが人間を超えると言ってもいろいろな超え方がありますよね。

❝AIが人間を凌駕する!?❞

玉手:データサイエンス教育研究推進センターでは、例えば蕎麦屋のご主人が経営判断に日常的にデータを活用できるようにする、そのくらいあたりまえにデータサイエンスを世の中に普及させることを目標の一つとしています。

秋葉:蕎麦屋のご主人がケータイのアプリに数字を打ち込んで「今日はどのくらい蕎麦を打っておこうかな?」なんて考える日がきたらおもしろいですね。

玉手:そんな日がくるのは、そう遠くはありません。ここで大切なのは「誰が意思決定をするか」です。AIは、蕎麦屋で日々つくるべき蕎麦の数や行政の意思決定に関するデータを提供しますが、最終的な意思決定をするのは人間です。人工知能は人間の判断を補完することであり、人間を凌駕することはありません。

齋藤:SF映画ではよく、人工知能が人間の代わりに意思決定する世界が描かれていますよね。

玉手:そう、そんなSF映画のような世界にはしてはいけないと私は考えています。蕎麦屋で人工知能を使って「今日は30杯しか売れない」と結果が出ても、それ以上頑張る意志を失ってしまうのは良くありません。「だけどもうちょっと頑張ってみようか」という人間の意志のポイントは下がってはいけません。データを使って割り出した費用対効果に対し、どう考えるかは「人」なのですから。

奥野:最後に考えるのは人。辞めるか、それを良くするためさらに考えるかの意思決定は、その人のモチベーションであり熱意です。たとえAIが人間を凌駕したとしても、私たちは文化的豊かさや揺るぎないアイデンティティを育むために、それぞれの人が自分自身がやりたいと思うことを心から楽しんでやるべきでしょう。綿密に計算して数字を出しても、その通り生きてたらおもしろくないと思いませんか?

(学生たち深く頷く)

奥野:今日は皆さん、たくさん話していただきましてありがとうございました。最後に玉手学長からメッセージをお願いします。

玉手:データ主導型社会に向かう自分自身の姿勢というのは、それぞれの人が決めるものです。今日は皆さんが意外と知らないデータサイエンス、そんなテーマをざっくばらんに話す時間を持てて良かったです。

それでは最後にクイズです。皆さんにプレゼントしたこのカプセルトイ、今日ここでダブる確率はどれぐらいあると思いますか? 

学生:あ、『ぺんぎん?』がダブっているね。

玉手:答えは…、実はダブる確率は意外と高いんです。データサイエンスをこんな風に日常から、ぜひ考えてみてください。

学生:今日はありがとうございました!とても楽しかったです。(→番外編へ)


もくじ

  • テーマ1:データサイエンティストと聞いてイメージすることは?(Vol.1へ)
  • テーマ2:いま話題の「ChatGPT」もう使ってみましたか?(Vol.2へ)
  • テーマ3:人工知能が人間を超える「シンギュラリティ(技術的特異点)」は来ると思いますか?
  • 番外編:参加学生のコメント(番外編へ)

CATEGORY

TAG

もっと見る

ARCHIVE

Translate »